
Real-Time BSD-driven Adaptation Along the
Temporal Axis of H.264/AVC Bitstreams

Wesley De Neve, Davy De Schrijver, Davy Van Deursen,
Peter Lambert, and Rik Van de Walle

Ghent University - IBBT
Department of Electronics and Information Systems - Multimedia Lab

Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium
{wesley.deneve,davy.deschrijver,davy.vandeursen,

peter.lambert,rik.vandewalle}@ugent.be

http://multimedialab.elis.ugent.be

Abstract. MPEG-21 BSDL offers a solution for exposing the structure
of a binary media resource as an XML description, and for the genera-
tion of a tailored media resource using a transformed XML description.
The main contribution of this paper is the introduction of a real-time
work flow for the XML-driven adaptation of H.264/AVC bitstreams in
the temporal domain. This real-time approach, which is in line with the
vision of MPEG-21 BSDL, is made possible by two key technologies:
BFlavor (BSDL + XFlavor) for the efficient generation of XML descrip-
tions and Streaming Transformations for XML (STX) for the efficient
transformation of these descriptions. Our work flow is validated in seve-
ral applications, all using H.264/AVC bitstreams: the exploitation and
emulation of temporal scalability, as well as the creation of video skims
using key frame selection. Special attention is paid to the deployment of
hierarchical B pictures and to the use of placeholder slices for synchro-
nization purposes. Extensive performance data are also provided.

Key words: BSDL, H.264/AVC, STX, temporal scalability, video skims

1 Introduction

Video adaptation is an active area of interest for the research and standardiza-
tion community [1]. The major purpose of a framework for video adaptation is
to customize video resources such that the resulting bitstreams meet the con-
straints of a certain usage environment. This makes it possible to optimize the
Quality of Experience (QoE) of the end-user. Several adaptation strategies can
be identified, either operating at a semantic level (e.g., removal of violent scenes),
at a structural level (e.g., picture dropping), or at a signal-processing level (e.g.,
coefficient dropping). In this paper, we introduce a real-time work flow for the
structural adaptation of H.264/AVC bitstreams along their temporal axis, based
on describing their high-level syntax in XML. Our approach enables applications
such as the exploitation and emulation of temporal scalability in streaming sce-
narios, as well as the creation of video highlights in off-line use cases.



2 Wesley De Neve et al.

I0

b5 b5

B4

B2

b5 b5

B3

P1

I0 P1 B2 B3 B4 b5 b5 b5 b5
possible decoding 
order

output order

sub-sequence

Fig. 1. The IbBbBbBbP coding pattern containing four sub-sequence layers

This paper is organized as follows. Section 2 introduces the two main en-
abling technologies, while Sect. 3 discusses several methods for the XML-driven
extraction of bitstreams of multiple frame rates from a single coded H.264/AVC
bitstream. Finally, Sect. 4 concludes this manuscript.

2 Enabling Technologies

2.1 Temporal Scalability in H.264/AVC

In video coding formats prior to H.264/AVC, temporal scalability is typically re-
alized by the disposal of bidirectionally predicted pictures (B pictures). However,
H.264/AVC only defines I, P, and B slices, and not I, P, and B pictures. Second,
a coded picture can comprise a mixture of different types of slices. Finally, B
slices can be used as a reference for the reconstruction of other slices [2].

Therefore, the recommended technique for achieving temporal scalability in
H.264/AVC is to rely on the concept of sub-sequences [3] [4]. A sub-sequence
represents a number of inter-dependent pictures that can be disposed without
affecting the decoding of the remaining bitstream. In practice, these units of con-
tent adaptation are typically created by relying on a hierarchical coding pattern.
This is a coding structure in which the use of reordering between picture decod-
ing order and picture output order takes the form of building up a coarse-to-fine
structuring of temporal dependencies. Nowadays, it is common to implement
such a coding pattern using B slice coded pictures [5] (further referred to as
hierarchical B pictures). However, hierarchical I slice or P slice coded pictures
can be used as well (if coding efficiency is less important than encoding and
decoding complexity), or a mix of the different slice and picture types.

An example coding pattern, offering four temporal levels, is shown in Fig. 1.
A capital letter denotes a reference picture; a small letter a non-reference picture.
Each picture is tagged with the value of frame num. This syntax element acts
as a counter that is incremented after the decoding of a reference picture, a
functionality useful for the purpose of error concealment and content adaptation.
Note that a hierarchical coding pattern is typically a good structure in terms of
coding efficiency, but not in terms of end-to-end delay.



Real-Time BSD-driven Adaptation of H.264/AVC Bitstreams 3

2.2 BSD-driven Content Adaptation

MPEG-21 BSDL The MPEG-21 Digital Item Adaptation (MPEG-21 DIA)
standard addresses issues resulting from the desire to access multimedia content
anywhere, anytime, and with any device. This concept is better known as Uni-
versal Multimedia Access (UMA). The MPEG-21 Bitstream Syntax Description
Language (MPEG-21 BSDL) is a description tool that is part of MPEG-21 DIA.
The language in question is a modification of W3C XML Schema to describe
the (high-level) structure of a particular media format (file format, coding for-
mat) [6]. This results in a document called a Bitstream Syntax Schema (BS
Schema). It contains the necessary information for exposing the structure of a
binary media resource as an XML-based text document, called Bitstream Syn-
tax Description (BSD), and for the creation of a tailored media resource using a
transformed BSD. This media resource is then suited for playback in a particular
usage environment, for instance constrained in terms of processing power.

In a BSDL-based content adaptation framework, the generation of a BSD
is done by a format-neutral software module called BintoBSD Parser, while the
adapted bitstream is constructed by a format-agnostic engine called BSDtoBin
Parser. How to transform a BSD is not in the scope of MPEG-21 BSDL. In this
paper, Streaming Transformations for XML (STX) are used for the transfor-
mation of BSDs (see further). The functioning of BintoBSD and BSDtoBin is
guided by a BS Schema for a particular media format. As such, the BintoBSD
and BSDtoBin Parsers constitute the pillars of a generic software framework for
media format-unaware content adaptation, and of which the operation is entirely
steered by XML-based technologies (e.g., XML, XML Schema, STX).

Finally, the main advantages of BSD-driven adaptation of binary media re-
sources can be summarized as follows:

– the complexity of the content adaptation step is shifted from the compressed
domain to the XML domain, allowing the reuse of standard XML tools (e.g.,
editors, transformation engines) and an integration with other XML-oriented
metadata specifications (e.g., the MPEG-7 standard);

– the high-level nature of the BSDs allows to think about a media resource on
how it is organized in terms of headers, packets, and layers of data;

– a format-agnostic content adaptation engine can be implemented (i.e., a
combination of a BSD adaptation engine and BSDL’s BSDtoBin Parser).

BFlavor The first version of the MPEG-21 BSDL specification is characterized
by a number of performance issues with respect to the automatic generation of
BSDs. Indeed, a format-agnostic BintoBSD Parser has to store the entire BSD in
the system memory in order to support the at-run time evaluation of an arbitrary
set of XPath 1.0 expressions. These XPath expressions are used to get access
to XML-structured information that is already retrieved from a media resource,
needed by a BintoBSD Parser for its decision-making while progressively parsing
a bitstream. This behavior of BintoBSD results in an increasing memory usage



4 Wesley De Neve et al.

original bitstream 
[trailer_30hz.avc] BSDb

transformed 
BSD

customized bitstream 
[trailer_15hz.avc]

BintoBSD Parser with 
context management

BFlavor: enhanced
version of XFlavor STX 

filter(s)

BSDtoBin Parser

<bitstream
bs1:bitstreamURI=

“trailer_30hz.avc”>
<header>0 24</header>
<I>25 2637</I>
<B>2663 746</B>
<P>3410 1451</P>
<B>4862 857</B>
<P>5720 1241</P>

</bitstream>

<bitstream
bs1:bitstreamURI=

“trailer_30hz.avc”>
<header>0 24</header>
<I>25 2637</I>
<P>3410 1451</P>
<P>5720 1241</P>

</bitstream>

(i)

(ii)

BSDx

bandwidth,
display size,
…

I B P B P

I
P

P

Fig. 2. BSD-driven media content adaptation, using BFlavor, STX, and BSDL

and a decreasing processing speed during the generation of an XML description
for the high-level structure of a media resource.

Two different solutions were developed by the authors of this paper to address
the performance issues of BSDL’s BintoBSD process:

1. the first approach adds a number of new attributes to BSDL, allowing a Bin-
toBSD Parser to keep the in-memory tree representation of a BSD minimal
while still guaranteeing a correct output for the BintoBSD process [7];

2. the second solution consists of the development of a new description tool for
translating the structure of a binary media resource into an XML description,
called BFlavor (BSDL + XFlavor) [8] [9].

BFlavor is the result of a modification of XFlavor to efficiently support
BSDL features. It allows to describe the structure of a media resource in an
object-oriented manner, after which it is possible to automatically create a BS
Schema, as well as a code base for a format-specific parser. This automatically
generated parser is subsequently able to generate BSDs that are compliant with
the automatically generated BS Schema. As such, this implies that the resulting
BSDs can be further processed by the upstream tools in a BSDL-based adapta-
tion chain, such as a format-neutral BSDtoBin Parser.

Fig. 2 provides a high-level overview of our XML-based content adaptation
chain. It illustrates the two different approaches for creating BSDL-compliant
BSDs: (1) by relying on an optimized BintoBSD Parser, using our extensions
to BSDL; (2) using a BFlavor-based parser. The transformation of the BSDs
is done by relying on STX while the adapted bitstreams are constructed using
BSDL’s BSDtoBin Parser.

3 Bitstream Extraction in H.264/AVC

In this section, a few experiments are discussed that were set up to evaluate the
expressive power and performance of the XML-driven content adaptation chain



Real-Time BSD-driven Adaptation of H.264/AVC Bitstreams 5

Table 1. Bitstream characteristics for The New World movie trailer

ID coding pattern frame rate resolution #slices/ #NALUsa duration sizeo

(Hz) picture (s) (MB)

TNW1 IbBbBbBbP 23.98 848x352 5 17808 148 42.9
TNW2 IbBbBbBbP 23.98 1280x544 5 17808 148 78.7
TNW3 IbBbBbBbP 23.98 1904x800 5 17808 148 126.0

a NALU stands for Network Abstraction Layer Unit; sizeo stands for original file size.

Table 2. BSD generation using an optimized BintoBSD Parser and BFlavor

BintoBSDm Parser BFlavor
ID throughput MCa BSD BSDc throughput MC BSD BSDc

(NALU/s) (MB) (MB) (KB) (NALU/s) (MB) (MB) (KB)

TNW1 124 1.7 44.3 326 1164 0.7 28.9 308
TNW2 110 1.7 44.2 335 777 0.7 29.0 317
TNW3 97 1.7 44.3 332 533 0.7 29.0 314

a MC stands for peak heap Memory Consumption; BSDc for compressed BSD size.

as proposed in Fig. 2. The focus is hereby put on the real-time adaptation of
H.264/AVC bitstreams along the temporal axis. The media resources involved
are three different versions of the same movie trailer, called The New World1.
The performance analysis was done by breaking up the XML-driven content
adaptation chain in its three fundamental building blocks: BSD generation, BSD
transformation, and bitstream construction. Real-time means that every building
block, typically running in a pipelined fashion on different processing nodes, is
able to achieve a throughput that is at least as fast as the playback speed of the
original media resource.

The most important properties of the bitstreams used, encoded with the
H.264/AVC reference software (JM 10.2), are shown in Table 1. The coding
pattern employed is visualized by Fig. 1. The results were obtained on a PC
with an Intel Pentium IV 2.61 GHz CPU and 512 MB of memory. All time
measurements were done 11 times, after which an average was taken of the last
10 runs in order to take into account the startup latency. BSDs were compressed
using WinRAR 3.0’s default text compression algorithm. The anatomy of the
H.264/AVC bitstreams was described up to and including the syntax elements
of the slice headers, once in MPEG-21 BSDL and once in BFlavor.

3.1 BSD Generation

Table 2 summarizes the results obtained during the generation of BSDs for
the bitstreams involved. The BFlavor-based parser outperforms our optimized
BintoBSD Parser on all metrics applied: the parser is faster than real-time for all
bitstreams used (i.e., its throughput is always higher than the playback speed of
23.98 x 5 NALUs/s or 120 NALU/s) and is characterized by a very low memory
footprint. The BFlavor-driven parser also produces textual BSDs that are much
1 Online available at: http://www.apple.com/trailers/.



6 Wesley De Neve et al.

Table 3. BSD transformation using STX and tailored bitstream construction using
BSDL’s format-neutral BSDtoBin Parser

BSD transformation bitstream reconstruction
ID operation throughput MC BSD BSDc throughput MC sizea

(NALUs/s) (MB) (MB) (KB) (NALUs/s) (MB) (MB)

TNW1 remove ELa 3 835 1.2 21.5 159.0 406.2 2.0 98.4
TNW2 remove EL 2 + 3 980 1.2 11.0 81.0 361.2 2.3 65.2
TNW3 remove EL 1 + 2 + 3 1098 1.3 5.8 41.0 264.3 2.2 38.6
TNW1 replace EL 3 537 1.7 36.9 194.0 515.2 2.1 98.5
TNW2 replace EL 2 + 3 445 1.7 33.5 121.0 554.7 2.3 65.3
TNW3 replace EL 1 + 2 + 3 447 1.3 33.1 84.6 537.2 2.2 38.8

a EL stands for enhancement layer.

smaller than those created by the BintoBSD Parser. This is due to the design
of our manually created BS Schema (used by the BintoBSD and BSDtoBin
Parser): it is less optimized than BFlavor’s automatically generated BS Schema
(only used by a BSDtoBin Parser) for the purpose of readability.

3.2 BSD Tranformation and Bitstream Reconstruction

The transformation of the BSDs was done using Streaming Transformations
for XML (STX)2. This transformation language is intended as a high-speed, low
memory consumption alternative to XSLT as it does not require the construction
of an in-memory tree. As such, STX is suitable for the transformation of large
XML documents with a repetitive structure, which are typical characteristics for
BSDs describing the high-level structure of compressed video bitstreams. Indeed,
several publications have shown that XSLT, as well as a hybrid combination of
STX/XSLT, are unusable in the context of XML-driven video adaptation, due to
a respective high memory consumption and high implementation overhead [10].

A number of STX stylesheets were implemented in the context of this re-
search, dependent on the targeted use case. In what follows, the semantics and
performance of the different transformation steps are outlined in more detail.

Exploiting Temporal Scalability by Dropping Slices. A first STX style-
sheet was written to drop the different temporal enhancement layers as visualized
in Fig. 1. The decision-making process was implemented by checking the values of
the following syntax elements: nal ref idc, slice type, and frame num. The
value of gaps in frame num value allowed flag in the Sequence Parameter
Set (SPS) was modified to one, signaling to a decoder that reference pictures were
intentionally dropped. As shown in the upper half of Table 3, the implementation
of the removal operations, at the level of a BSD, can be done very efficiently
in terms of processing time and memory consumption needed. The STX engine
used was the Joost STX processor (version 2005-05-21).

2 Online available at http://stx.sourceforge.net/.



Real-Time BSD-driven Adaptation of H.264/AVC Bitstreams 7

Emulation of Temporal Scalability Using Placeholder Slices. In the
context of digital video coding, it is important to separate the concept of what
is encoded in the bitstream, which is essentially a compact set of instructions
to tell a decoder how to decode the video data, from the concept of what is
the decision-making process of an encoder. The latter process is not described
in a video coding standard, since it is not relevant to achieving interoperability.
Consequently, an encoder has a large amount of freedom about how to decide
what to tell a decoder to do. This freedom can also be exploited by a content
adaptation engine to offer a solution for resynchronization issues that may occur
after the adaptation of an elementary bitstream in the temporal domain.

The traditional view of temporal scalability is to remove certain coded pic-
tures from a bitstream while still obtaining a decodable remaining sequence of
pictures. This approach is typically applied when using BSD-driven bitstream
thinning. However, a major drawback of this method is that it fails when, for
instance, the remaining pictures are to be resynchronized with an audio stream.

Elementary bitstreams usually do not convey (absolute) timing information
as this responsibility is typically assigned to the systems layer (e.g., file for-
mats, network protocols), and not to the coding layer. Consequently, after hav-
ing dropped certain pictures in a bitstream, it is often impossible to synchronize
the remaining pictures with a corresponding audio stream without an external
knowledge, an observation that is especially true when varying coding patterns
are in use. Therefore, we propose to exploit temporal scalability in elementary
video bitstreams by replacing coded pictures with placeholder pictures, a tech-
nique that operates at the same level as BSDL, i.e. at the coding layer [10].

A placeholder or dummy picture is defined as a picture that is identical to a
particular reference picture, or that is constructed by relying on a well-defined
interpolation process between different reference pictures. Therefore, only a lim-
ited amount of information needs to be transmitted to signal placeholder pictures
to a decoder. Placeholder pictures are used to fill up the gaps that are created
in a bitstream due to the disposal of certain pictures, a technique that is fur-
ther referred to as the emulation of temporal scalability. This approach makes
it straightforward to maintain synchronization with other media streams in a
particular container format, especially when a varying coding structure is in use
because the total number of pictures remains the same after the adaptation step.
As such, from the bitstream’s point of view, emulating temporal scalability can
be considered a substitution operation, and not a removal operation.

Several STX stylesheets were developed to translate the B slices in the tem-
poral enhancement layers of the H.264/AVC bitstreams to skipped B slices and
skipped P slices (see Fig. 3).

– A picture consisting of skipped B slices tells an H.264/AVC decoder to re-
construct the picture by doing an interpolation between the previous picture
and the next picture in output order3.

3 The interpolated picture is computed based on the relative temporal positions of the
list 0 and list 1 (decoded) reference pictures.



8 Wesley De Neve et al.

<stx:group name=" BtoskippedP">

<stx:template match ="jvt:coded_slice_of_a_non_IDR_picture" public ="no">

<stx:element name=" coded_slice_of_a_skipped_non_IDR_picture" namespace =" h264_avc">

<stx:process -children group =" BtoskippedP "/>

</stx:element >

</stx:template >

<stx:template match ="jvt:slice_layer_without_partitioning_rbsp" public ="no">

<stx:element name=" skipped_slice_layer_without_partitioning_rbsp" namespace =" h264_avc">

<stx:process -children group =" BtoskippedP "/>

</stx:element >

</stx:template >

<stx:template match ="jvt:slice_type" public ="no">

<stx:element name=" slice_type" namespace =" h264_avc ">0</stx:element >

</stx:template >

<stx:template match ="jvt:slice_qp_delta" public ="no">

<stx:element name=" slice_qp_delta" namespace =" h264_avc ">0</stx:element >

</stx:template >

<stx:template match ="jvt:if_slice_type_eq_B" public ="no"/>

<stx:template match ="jvt:slice_data" public ="no">

<stx:element name=" skipped_slice_data" namespace =" h264_avc">

<stx:element name=" mb_skip_run" namespace =" h264_avc ">234</stx:element >

<stx:element name=" rbsp_trailing_bits" namespace =" h264_avc">

<stx:element name=" rbsp_stop_one_bit" namespace =" h264_avc ">1</stx:element >

<stx:element name=" rbsp_alignment_zero_bit" namespace =" h264_avc ">0</stx:element >

</stx:element >

</stx:element >

</stx:template >

</stx:group >

Fig. 3. Extract of the STX stylesheet for translating B slices to skipped P slices in the
XML domain. Similar logic is used for translating I and P slices to skipped P slices

– A picture consisting of skipped P slices instructs a decoder to output the
last picture in the decoded picture buffer4.

Skipped B slices were used as a substitute for the B slices in the third en-
hancement layer when only this layer is to be removed; the use of skipped P
slices would lead to a wrong output order (i.e., I0B4B3B4B2B4B4B4P1), due
to the fact that B4 is the last picture in the decoded picture buffer. Skipped
P slices were used as a substitute for all B slices when at least two enhance-
ment layers are replaced; a correct output order can be obtained then (e.g.,
I0B2B2B2B2B2B2B2P1 when dropping two enhancement layers).

Performance results are provided in the lower half of Table 3. It is clear that
the translation operations, which are entirely expressed in the XML domain,
can be executed in real time. The same observation is true for the behaviour of
BSDL’s BSDtoBin Parser [11]. The overhead of the skipped slices in the resulting
bitstreams can be ignored, as one can notice in the column with label sizea.

Video Skims by Key Frame Selection. Finally, our XML-driven content
adaptation approach was also used for the production of video skims. These
compact abstractions of long video sequences are typically created by filtering
out relevant pictures, e.g. key pictures that are located near the beginning of a
shot. Therefore, a STX stylesheet was implemented that takes as input the shot
detection information as produced by the IBM MPEG-7 Annotation Tool5 , and
that subsequently identifies and marks the I slice coded pictures located near

4 This is, the first (decoded) reference picture in list 0.
5 Online available at: http://www.alphaworks.ibm.com/tech/videoannex.



Real-Time BSD-driven Adaptation of H.264/AVC Bitstreams 9

<bitstream xmlns =" h264_avc" xmlns:jvt=" h264_avc" bitstreamURI =" the_new_world_h480p_IbBbBbBb.h264">

<byte_stream >

<byte_stream_nal_unit pic_cnt ="0" shot=" false">

<!-- Sequence Parameter Set -->

</byte_stream_nal_unit >

<byte_stream_nal_unit pic_cnt ="0" shot=" false">

<!-- Picture Parameter Set -->

</byte_stream_nal_unit >

<byte_stream_nal_unit pic_cnt ="1" shot="true">

<!-- First coded slice of I_0 (an IDR picture) -->

</byte_stream_nal_unit >

<byte_stream_nal_unit pic_cnt ="2" shot=" false">

<!-- First coded slice of I_1 (a non -IDR picture) -->

</byte_stream_nal_unit >

<byte_stream_nal_unit pic_cnt ="3" shot=" false">

<!-- First coded slice of B_2 (a non -IDR picture) -->

</byte_stream_nal_unit >

<!-- Remaining byte stream NALUs in decoding order -->

</byte_stream >

</bitstream >

Fig. 4. Embedding shot information as additional attributes in a BSD

the start of a shot. More precisely, the information about the different shots is
embedded by the STX stylesheet as additional attributes in a BSD (see Fig. 4).
The resulting BSD is then provided as input to a next STX stylesheet; it filters
out the relevant I slice coded pictures and translates all remaining I and B slices
to skipped P slices to maintain synchronization with the original audio stream.
Note that the IbBbBbBb coding pattern was used instead of IbBbBbBbP, offer-
ing random access at regular picture intervals as every picture in the base layer
is encoded as an I slice coded picture. The summary of the video bitstream also
results in a significant reduction of its file size: from 44.7 MB to 4.40 MB when
TNW1 is used with the IbBbBbBb pattern. This technique may be of particular
interest for the repurposing of content for constrained usage environments.

4 Conclusions

This paper introduced a real-time work flow for the description-driven adapta-
tion of H.264/AVC bitstreams along their temporal axis. The key technologies
used were BFlavor for the generation of BSDs, STX for the transformation of
BSDs, and BSDL’s format-neutral BSDtoBin Parser for the construction of tai-
lored bitstreams. Our approach was validated in several use cases: the exploita-
tion of temporal scalability by dropping certain slices; the emulation of temporal
scalability by relying on skipped slices; and the creation of video skims. The use
of video skims, new in the context of BSD-based video adaptation, is made
possible by enriching a BSD with additional metadata to steer the BSD adap-
tation process. As an example, an overall pipelined throughput of at least 447
NALUs/s was achieved when emulating temporal scalability in a high-definition
H.264/AVC bitstream by substituting all slices in the enhancement layers by
skipped P slices, together with a combined memory use of less than 5 MB.

A remaining bottleneck in this content adaptation system is the size of the
textual BSDs. Further research will also concentrate on shifting the focus of
BSD-driven content adaptation from a structural level to a semantic level.



10 Wesley De Neve et al.

Acknowledgments. The research activities that have been described in this
paper were funded by Ghent University, the Interdisciplinary Institute for Broad-
band Technology (IBBT), the Institute for the Promotion of Innovation by
Science and Technology in Flanders (IWT), the Fund for Scientific Research-
Flanders (FWO-Flanders), the Belgian Federal Science Policy Office (BFSPO),
and the European Union.

References

1. Chang, S.-F., Vetro, A.: Video Adaptation: Concepts, Technology, and Open Issues.
Proc. the IEEE 93 (1) (2005) 145-158

2. Sullivan, G.J., Wiegand, T.: Video Compression - From Concepts to the H.264/AVC
Standard. Proc. the IEEE 93 (1) (2005) 18-31

3. Tian, D., Hannuksela, M., Gabbouj, M.: Sub-sequence Video Coding for Improved
Temporal Scalability. Proceedings 2005 IEEE International Symposium on Circuits
and Systems (ISCAS 2005), pages 6074-6077, Kobe, Japan, May 2005

4. De Neve, W., Van Deursen, D., De Schrijver, D., De Wolf, K., Van de Walle, R.: Us-
ing Bitstream Structure Descriptions for the Exploitation of Multi-layered Temporal
Scalability in H.264/AVC’s Base Specification. Lecture Notes in Computer Science,
Volume 3767, pages 641-652, Oct 2005

5. Schwarz, H., Marpe, D., Wiegand, T.: Analysis of Hierarchical B Pictures and
MCTF. Proceedings 2006 International Conference on Multimedia & Expo (ICME
2006), Toronto, Canada, July 2006

6. Panis, G., Hutter, A., Heuer, J., Hellwagner, H., Kosch, H., Timmerer, T., Dev-
illers, S., Amielh, M.: Bitstream Syntax Description: A Tool for Multimedia Resource
Adaptation within MPEG-21. Signal Processing: Image Communication 18 (2003)
721-747

7. De Schrijver, D., De Neve, W., De Wolf, K., Van de Walle, R.: Generating MPEG-21
BSDL Descriptions Using Context-Related Attributes. Proceedings of the 7th IEEE
International Symposium on Multimedia (ISM 2005), pages 79-86, USA, December
2005

8. Van Deursen, D., De Neve, W., De Schrijver, D., Van de Walle, R.: BFlavor: an
Optimized XML-based Framework for Multimedia Content Customization. Proceed-
ings of the 25th Picture Coding Symposium (PCS 2006), 6 pp on CD-ROM, Beijing,
China, April 2006

9. De Neve, W., Van Deursen, D., De Schrijver, D., De Wolf, K., Lerouge, S., Van de
Walle, R.: BFlavor: a harmonized approach to media resource adaptation, inspired
by MPEG-21 BSDL and XFlavor. Accepted for publication in EURASIP Signal Pro-
cessing: Image Communication, Elsevier.

10. De Neve, W., De Schrijver, D., Van de Walle, D., Lambert, P., Van de Walle,
R.: Description-Based Substitution Methods for Emulating Temporal Scalability in
State-of-the-Art Video Coding Formats. Proceedings of the 7th International Work-
shop on Image Analysis for Multimedia Interactive Services (WIAMIS 2006), pages
83-86, Incheon, Korea, 2006

11. Devillers, S., Timmerer, C., Heuer, J., Hellwagner, H.: Bitstream Syntax
Description-Based Adaptation in Streaming and Constrained Environments. IEEE
Trans. Multimedia 7 (3) (2005) 463-470


